Cloud Computing – How is it different from Grid Computing?

Trial lecture in conjunction with Ph.D. thesis defense

André Rigland Brodtkorb 2010-12-17

Outline

- Distributed and Grid Computing
- Cloud Computing and differences from the Grid
- Summary and Future Trends

Distributed Computing

A distributed system consists of **multiple autonomous computers** that **communicate through a** computer **network**.

-- Wikipedia: Distributed computing

- Autonomous computers
 - Independent machines such as laptops, desktops, clusters, supercomputers, etc.
- Computer Network
 - The internet, (gigabit) ethernet, wifi, infiniband, etc.

Distributed Computing

- No single machine has a full view of the problem
 - Each machine computes on a subproblem
- Example: Distributed computation of pi (3.14159...)
 - Disclaimer: this is a naïve way of calculating Pl, only used as an example of distributed computing
 - Sample random points within one quadrant
 - Find the ratio of points inside to outside the circle
 - Pi ≈ 4 * ratio
 - Increase accuracy by sampling more points
 - Increase speed by using more nodes

Distributed Computing

- Some problems require distributed computing
 - No single machine is large enough to represent the full problem
 - Example: The Millennium Run (2005)
 - Simulated evolution of matter in the universe
 - 10 billion particles
 - 25 terabytes of output
 - No single machine is fast enough
 - Weather reports
 - Tsunami warnings

Grid Computing: Four examples [1]

- Placement of a new factory
 - Simulation runs at an application service provider
 - Historical data for the simulation hosted at a storage service provider
 - Application service provider uses a cycle provider for more "oomph"
- Feasibility study of supersonic aircraft
 - Multidisciplinary simulation
 - Different parts of the simulation runs on different participants machines
- Crisis management team for chemical spill
 - Local weather and soil models
 - Chemical reaction models
 - Planning and coordinating evacuation
- Large Hadron Collider CERN
 - Pooling of computing, storage and networking resources
 - Analysis of petabytes of data.

What did "The Grid" offer to each use case?

- Placement of a new factory:
 - Coupling of multiple simulations
 - Third-party storage
 - Third-party computations
- Feasibility study of supersonic aircraft:
 - Coupling of simulations at different locations
- Crisis management team for chemical spill:
 - Coupling of simulations at different locations
- Large Hadron Collider CERN:
 - Storing and processing vast amounts of data

Grid Computing – The Grand Idea

- The four cases:
 - Do not exchange files/data share resources
- Sharing of resources
 - CPU cycles
 - Software / Applications
 - Storage
 - Network
 - •
- Highly dynamic sharing of compute resources
 - Resource sharing "like a power grid"
 - Small and large providers implement a set of standard protocols
 - Mutually distrustful partners
 - (Potentially very) short time-span

Grid Computing Concepts

Grid computing is the "coordinated resource sharing [...] in virtual organizations"
-- I. Foster et al, Anatomy of the Grid, 2001

- Virtual Organizations A key concept in Grid Computing
 - Partners who intend to share resources to reach a common goal
 - Vary dramatically in purpose, scope, size, duration, structure, etc.
 - Partners can be both producers and consumers
 - Each of the four use-cases are examples
- Grid computing facilitates resource sharing in scalable virtual organizations
 - No VPN connection

Grid Architecture: The hour glass model

- The number of abstractions must be limited
 - They should not over determine possibilities, or limit performance
 - They are required to capture the fundamental mechanisms for resource sharing
- Grid protocols are built on internet protocols
 - To be on "The Grid" you must be on the internet

Grid Architecture

- The Grid is a layered architecture
- The application layer consists of the applications a user will implement
- The collective layer contains general-purpose utilities
- The resource layer specifies protocols for operating with shared resources
- The connectivity layer specifies protocols for secure and easy access
- The Fabric consists of the resources to be shared
 - Network bandwidth, CPU time, Applications, etc.

Figure from I. Foster et al., The Anatomy of the Grid: Enabling Scalable Virtual Organizations, 2001

Grid Architecture: Connectivity Protocols

- Communication and authentication protocols
 - Single sign-on
 - Authorization delegation to programs
 - Account management
- Example: GSI Grid Security Infrastructure (built around existing TLS protocols)

Grid Architecture: Resource Protocols

- Give a unified way of accessing the fabric resources
 - Builds on the connectivity layer
 - Consists of information and management protocols
 - Information protocols offer information about shared resources
 - Management protocols to negotiate access to shared resources
- Example: GRIP Grid Resource Information Protocol (Based on LDAP)
- Example: GRAM Grid Resource Access and Management (Allocation and monitoring of resources)

Grid Architecture: Collective Layer

- Builds important utilities on top of resource and connectivity protocols
 - Co-allocation of resources
 - Monitoring
 - Data replication
 - Accounting
- APIs and SDKs:
 - MPI for grids: GridMPI, MPICH-G2, etc.
 - Checkpointing, job management, etc.

Collective Layer: Brokers and Schedulers

- Grid infrastructure is expensive
 - Typically high-performance clusters
 Want close to 100% resource utilization
- Grids thus often use batch schedulers
 - Maintains a queue of incoming applications
 - GRAM Grid Resource Allocation Manager
 - JSDL Job Submission Description Language
 - Condor
 - SLURM Simple Linux Utility for Resource Management

Statistics graph by Steve Rader, http://oss.oetiker.ch/rrdtool/gallery/index.en.html

Volunteer Computing – A part of Grid Computing?

- Prototypical use-cases
 - SETI: Search for Extra-Terrestrial Intelligence
 - Protein Folding for drug development
 - Calculation of Mersenne primes (cryptography)
- Volunteer computing properties
 - Embarrassingly parallel
 - Compute intensive
 - Little data communication

Projects:

- Cummulative BOINC project contribution: 11.71 Petaflops, 6 million computers
- MilkyWay@home 2.6 Petaflops, Study of stellar systems
- Folding@home 7.87 Petaflops, Protein folding
- SETI@home 769 Teraflops, Search for extraterrestrial intelligence
- World Community Grid 510 000 user accounts FightAids@home, Dengue drugs, Genome comparison, clean energy, etc.

Protein folding.png from Wikipedia, <u>DrKjaergaard</u>

Is Volunteer Computing *Really* Grid Computing?

- Yes
 - A large number of autonomous computers connected through a network
 - A virtual organization joint for a common goal
 - Automatic resource management
- But not quite?
 - One-sided relationship: contributors get nothing (or "fame") in return for resource sharing
- What about peer-to-peer computing? [1]
 - Bittorrent, The Onion Router, etc.

Examples of Today's Grids

- WLCG Worldwide LHC Computing Grid
 - Processing of data from LHC
- NDGF Nordic Data Grid Facility / Nordunet
 - Collaboration mainly between Norway, Sweden, Denmark, and Finland.
 - Part of WLCG
- Open Science Grid
 - American collaboration of 72 institutions
 - 25000 computers (43k processors)
 - Part of WLCG
- TeraGrid
 - American collaboration of 11 institutions
 - Mostly Molecular Biosciences, physics and chemistry
- EGI European Grid Infrastructure
 - Supersedes EGEE Enabling Grids for E-sciencE
 - 50 institutions, 40 countries

WLCG – Worldwide LHC Computing Grid

The worlds largest grid

- Storage and processing of vast amounts of data
 - 15 million gigabytes per year
- Too expensive to build one datacenter
- 8000 researchers who access data

- Tier 0: CERN
- Tier 1: Dedicated 10Gb/s fiber to 11 major datacenters
 - 63,723,713 GiB *online* Storage (plus additional tape storage)
 - 70,382 CPU cores
- Tier 2: 140 sites

- ALICE, ATLAS, CMS, LHCb
- Middleware (Grid technology)
 - European Middleware Initiative (EMI -> ARC, gLite, UNICORE, dCache)
 - The Globus Toolkit
 - Open Middleware Infrastructure Institute
 - Virtual Data Toolkit

Top image from http://cdsweb.cern.ch/record/1221418

Bottom image from CERN, "An EGEE Comparative Study: Grids and Clouds – Evolution or Revolution?", 2008

NDGF - Nordic Data Grid Facility / Nordunet

- Building large clusters and supercomputers is expensive!
 - Data centers in Nordic countries can share compute resources with each other to solve larger problems than would be possible alone.
 - Funded by Nordic research councils
- Creator of ARC middleware
 - Builds on standards, including the Globus toolkit
- Applications:
 - LHC,
 - BioGrid,
 - Other academic uses

Image from http://www.nordugrid.org/

SweGrid Use

From Grids to Clouds

What is the Cloud?

"When talking about the cloud, it is **mandatory** to use at least one fitting quote"

-- A. R. Brodtkorb, Ph.D. Trial Lecture, 2010

The Mandatory Quotes

"The interesting thing about cloud computing is that **we've redefined cloud computing to include everything we already do**.... I don't understand what we would do differently in light of cloud computing other than change the wording of some of our ads."

– Larry Ellison, CEO Oracle, 2008

"A lot of people are jumping on the [cloud] bandwagon, but **I have not heard two people say the same thing about it.**"

- Andy Isherwood, HP VP Support & Services, 2008

"It's stupidity. It's worse than stupidity: it's a marketing hype campaign. Somebody is saying this is inevitable — and whenever you hear somebody saying that, it's very likely to be a set of businesses campaigning to make it true."

- Richard Stallman, Founder of the GNU Project, 2008

Grids and Clouds

Adapted from Cloud Computing and Grid Computing 360-Degree Compared, I. Foster et al., 2009, DOI: 10.1109/GCE.2008.4738445

Defining the Cloud

- The Cloud is a relatively new concept
 - A wide variety of definitions [1]
 - Garner says:
 Will hit mainstream market in 2-5 years [2]
- Important concepts and technologies
 - Web-based
 - Virtualization
 - On-demand
 - Service level agreements
- Important keywords
 - Platform as a Service
 - Software as a Service
 - Infrastructure as a Service

[1] Jeremy Geelan, "Twenty-One Experts Define Cloud Computing", 2009
[2] Gartner, "2010 Hype Cycle Special Report", 2010

Cloud Computing Core Concepts

- Enabling technology: Web 2.0
 - AJAX, SOAP, etc.
 - Used in: Google docs, web applications, etc.
- Enabling technology: Virtualization
 - Multiple virtual machines can occupy the same physical hardware
 - Virtual Machines in cloud computing is the equivalent of threads of parallel computing
- Enabling technology: Multi-core
 - Multi-core means that multiple virtual machines can easily run on the same physical machine
- Enabling technology: Idling server parks
 - Less than 10% server utilization [1, 2]

[1] Jeff Bezos to technologyreview.com, "Servers For Hire" by Wade Roush, 2006 [2] Vivek Kundra to datacenterknowledge.com, "Kundra: Fed Data Centers 7 Percent Utilized", 2010

Cloud Computing Keywords

- Platform as a Service
 - Offers a high-level programming API
 - Examples: Microsoft Azure, Google AppEngine
- Software as a Service
 - Examples: Google docs (Office applications),
 Salesforce.com (CRM Customer relationship management)
- Infrastructure as a Service
 - Lease virtual machines
 - Example: Amazon EC2, Amazon S3, Dropbox

Cloud Infrastructure as a Service: Amazon EC2 and S3

- Amazon EC3: Elastic Compute Cloud
 - Buy virtual machines just-in-time
 - All you need is a credit card to get started
 - Standardized Service Level Agreements
 - Supply a virtual machine image of your choice
 - Or choose from a set of standard images
 - Machine goes online in less than two minutes
 - Supply input to running images
 - SSH, etc
- Amazon S3: Simple Storage Service
 - Buy storage just-in-time
 - Accessible from HTTP and BitTorrent

Amazon EC2 - Pricing Model (Service Level Agreements)

Service	Price
Micro Instance	\$0.02 / hour
Large CPU Instance (7.5 GiB RAM, 2 cores)	\$0.34 / hour
High CPU Instance (7.0 GiB Ram, 8 cores)	\$0.68/ hour
Cluster Compute Instance (23 GiB, 8 cores, 10GiB Ethernet)	\$1.60/ hour
Cluster GPU Instance (22 GiB, 8 cores, 2xM2050, 10GiB Ethernet)	\$2.10/hour
High Redundancy S3 Storage	\$0.14 / GiB / Mnth
Reduced Redundancy S3 Storage	\$0.093 / GiB / Mnth
EBS Storage	\$0.10 / GiB / Mnth
Small MySQL Instance	\$0.22 / hour

- NEW Q4 2010: GPU instances
- Windows images cost slightly more (10-20 cent)
- Data transfer in and out of S3 datacenter is not free

Cloud Selling Point #1: Fine-grained Scalability

- Small startup company with a good idea (e.g., dropbox)
- How much infrastructure do you need?
- Using the cloud will probably be the least expensive alternative

- Capacity
- Demand
- Problematic demands

Cloud Selling Point #2: Pricing schemes

"1000 servers for one hour costs no more than using one server for 1000 hours" [1]

- Rendering Ratatouille took over 1500 CPU years
- Payroll calculations
- Other "peaky" workloads

Ray tracing / rendering

Payroll

[1] Armbrust et al., A View of Cloud Computing, 2010

The Economies of Scale

"The GSA previously paid \$2.35 million in annual costs for USA.gov, including \$2 million for hardware refreshes and software re-licensing and \$350,000 in personnel costs, compared to the \$650,000 annual cost to host the site with Terremark." [1]

- Huge data-centers are cost effective [2]
 - Costs down a factor 5-7
- Clouds could mean more green computing [3]
 - Higher resource load means less servers
 - US Datacenters: 170 Mt CO2
 - Argentina: 142 Mt CO2
 - Netherlands: 146 Mt CO2
 - Malaysia: 178 Mt CO2

Cloud Uncertainties

- Who has access to your data?
 - Cloud provider?
 - Subcontractors?
 - Other customers?
 - Law enforcement agencies in another country?
- What happens if the cloud provider (or subcontractor)
 - Goes out of business?
 - Is bought by a third party?
 - Is brought down for political or legal reasons? [1, 2]
 - Is blacklisted because of another customer (Wikileaks, email spammer, etc.)?
 - Leaks its password database? (Gawker)
- Other problems
 - Vendor lock-in: can you export your data?
 - Debugging at large scales?
 - Software licenses?

[1] Brian Krebs, Amazon: Hey Spammers, Get Off My Cloud!, Washington Post, 2008 [2] Kim Zetter, Company Caught in Texas Data Center Raid Loses Suit Against FBI, wired.com, 2009

Is the "Cloud" something new?

"Computation may someday be **organized as a public utility**."

– John McCarthy, Inventor of Lisp, 1961

- No! Same sheep, different wrapping:
 - Grids: "Dynamic resource sharing"
 - Utility Computing: "Pay as you go"
 - The natural evolution of the grid

- Yes! Technology enablers have realized old ideas:
 - Appearance of infinite computing resources
 - No up-front commitment from users
 - Pay as you go on a short-term basis

Summary

In 2012 80% Fortune 1000 will pay for some cloud computing service; 30% will pay for Cloud infrastructure.

-- Gartner, 2008

- Most of us are users of "the cloud" already
 - Youtube, Dropbox, Google docs, etc.
 - Clouds will take over more and more of private computing
- But there are major obstacles:
 - Privacy
 - Data safety
 - Vendor lock-in
- Future of Grids:
 - Have built up a large user base and mature technology
 - Will continue to prosper in academic communities
- Future of Clouds:
 - Economic potential is huge => No up-front commitment
 - Economies of scale => Green computing
 - GPU Clouds => True GPU virtualization next?
 - High-performance computing and academic use of Clouds?

Some References and Further Reading

- I. Foster, **The Grid: A New Infrastructure for 21st Century Science**, Physics Today, Volume 55, Issue 2, pp. 42-47 (2002).
- I. Foster, C. Kesselman, S. Tuecke, **The Anatomy of the Grid**: **Enabling Scalable Virtual Organizations**, Proceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing, 2001
- lan Foster and Adriana lamnitchi, **On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing**, 2nd International Workshop on Peer-to-Peer Systems (IPTPS'03), 2003
- Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, Matei Zaharia, A view of cloud computing, Communications of the ACM, Volume 53, Number 4 (2010), Pages 50-58
- Foster, I. Yong Zhao Raicu, I. Lu, S., **Cloud Computing and Grid Computing 360-Degree Compared**, Grid Computing Environments Workshop, 2008. GCE '08, Page(s): 1 10
- EGEE Report: Grids and Clouds Evolution or Revolution?, 2008
- Open Cloud Manifesto, <u>www.opencloudmanifesto.org</u>
- Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, Ivona Brandic, Cloud computing and emerging IT platforms: Vision, hype, and
 reality for delivering computing as the 5th utility, Journal of Future Generation Computer Systems Volume 25 Issue 6, June, 2009
- Marios D. Dikaiakos, Dimitrios Katsaros, Pankaj Mehra, George Pallis, Athena Vakali, Cloud Computing: Distributed Internet Computing for IT and Scientific Research, IEEE Internet Computing, pp. 10-13, September/October, 2009
- Cloud Computing Use Case White Paper V4
- Open Grid Forum -- www.gridforum.org
- Grid Café www.gridcafe.org
- I. Foster, C. Kesselmann, The Grid: Blueprint for a New Computing Infrastructure

