Cloud Computing – How is it different from Grid Computing?

Trial lecture in conjunction with Ph.D. thesis defense

André Rigland Brodtkorb
2010-12-17
Outline

- Distributed and Grid Computing
- Cloud Computing and differences from the Grid
- Summary and Future Trends
Distributed Computing

A distributed system consists of multiple autonomous computers that communicate through a computer network.

-- Wikipedia: Distributed computing

- Autonomous computers
 - Independent machines such as laptops, desktops, clusters, supercomputers, etc.
- Computer Network
 - The internet, (gigabit) ethernet, wifi, infiniband, etc.
Distributed Computing

- No single machine has a full view of the problem
 - Each machine computes on a subproblem

- Example: Distributed computation of π (3.14159…)
 - Disclaimer: this is a naïve way of calculating π, only used as an example of distributed computing
 - Sample random points within one quadrant
 - Find the ratio of points inside to outside the circle
 - $\pi \approx 4 \times \text{ratio}$
 - Increase accuracy by sampling more points
 - Increase speed by using more nodes

$\pi = 3.1345$
$\pi = 3.1305$
$\pi = 3.1597$

Distributed: $\pi = 3.1457$
Distributed Computing

• Some problems require distributed computing
 • No single machine is large enough to represent the full problem
 • Example: The Millennium Run (2005)
 • Simulated evolution of matter in the universe
 • 10 billion particles
 • 25 terabytes of output

• No single machine is fast enough
 • Weather reports
 • Tsunami warnings
Grid Computing: Four examples [1]

- Placement of a new factory
 - Simulation runs at an application service provider
 - Historical data for the simulation hosted at a storage service provider
 - Application service provider uses a cycle provider for more “oomph”

- Feasibility study of supersonic aircraft
 - Multidisciplinary simulation
 - Different parts of the simulation runs on different participants machines

- Crisis management team for chemical spill
 - Local weather and soil models
 - Chemical reaction models
 - Planning and coordinating evacuation

- Large Hadron Collider – CERN
 - Pooling of computing, storage and networking resources
 - Analysis of petabytes of data.

What did “The Grid” offer to each use case?

- **Placement of a new factory:**
 - Coupling of multiple simulations
 - Third-party storage
 - Third-party computations

- **Feasibility study of supersonic aircraft:**
 - Coupling of simulations at different locations

- **Crisis management team for chemical spill:**
 - Coupling of simulations at different locations

- **Large Hadron Collider – CERN:**
 - Storing and processing vast amounts of data
Grid Computing – The Grand Idea

• The four cases:
 • Do not exchange files/data – share resources

• Sharing of resources
 • CPU cycles
 • Software / Applications
 • Storage
 • Network
 • …

• Highly dynamic sharing of compute resources
 • Resource sharing “like a power grid”
 • Small and large providers implement a set of standard protocols
 • Mutually distrustful partners
 • (Potentially very) short time-span
Grid Computing Concepts

Grid computing is the “coordinated resource sharing [...] in virtual organizations”

• Virtual Organizations – A key concept in Grid Computing
 • Partners who intend to share resources to reach a common goal
 • Vary dramatically in purpose, scope, size, duration, structure, etc.
 • Partners can be both producers and consumers
 • Each of the four use-cases are examples

• Grid computing facilitates resource sharing in scalable virtual organizations
 • No VPN connection
Grid Architecture: The hour glass model

- The number of abstractions must be limited
 - They should not over determine possibilities, or limit performance
 - They are required to capture the fundamental mechanisms for resource sharing

- Grid protocols are built on internet protocols
 - To be on “The Grid” you must be on the internet
Grid Architecture

- The Grid is a layered architecture
- The application layer consists of the applications a user will implement
- The collective layer contains general-purpose utilities
- The resource layer specifies protocols for operating with shared resources
- The connectivity layer specifies protocols for secure and easy access
- The Fabric consists of the resources to be shared
 - Network bandwidth, CPU time, Applications, etc.

Figure from I. Foster et al., The Anatomy of the Grid: Enabling Scalable Virtual Organizations, 2001
Grid Architecture: Connectivity Protocols

- Communication and authentication protocols
 - Single sign-on
 - Authorization delegation to programs
 - Account management
- Example: GSI - Grid Security Infrastructure (built around existing TLS protocols)

Figure from I. Foster et al., The Anatomy of the Grid: Enabling Scalable Virtual Organizations, 2001
Grid Architecture: Resource Protocols

- Give a unified way of accessing the fabric resources
 - Builds on the connectivity layer
 - Consists of information and management protocols
 - Information protocols offer information about shared resources
 - Management protocols to negotiate access to shared resources
- Example: GRIP - Grid Resource Information Protocol (Based on LDAP)
- Example: GRAM - Grid Resource Access and Management (Allocation and monitoring of resources)

Figure from I. Foster et al., The Anatomy of the Grid: Enabling Scalable Virtual Organizations, 2001
Grid Architecture: Collective Layer

- Builds important utilities on top of resource and connectivity protocols
 - Co-allocation of resources
 - Monitoring
 - Data replication
 - Accounting

- APIs and SDKs:
 - MPI for grids: GridMPI, MPICH-G2, etc.
 - Checkpointing, job management, etc.

Figure from I. Foster et al., The Anatomy of the Grid: Enabling Scalable Virtual Organizations, 2001
Collective Layer: Brokers and Schedulers

- Grid infrastructure is expensive
 - Typically high-performance clusters
 => Want close to 100% resource utilization

- Grids thus often use batch schedulers
 - Maintains a queue of incoming applications
 - GRAM - Grid Resource Allocation Manager
 - JSDL - Job Submission Description Language
 - Condor
 - SLURM - Simple Linux Utility for Resource Management
Volunteer Computing – A part of Grid Computing?

• Prototypical use-cases
 • SETI: Search for Extra-Terrestrial Intelligence
 • Protein Folding for drug development
 • Calculation of Mersenne primes (cryptography)

• Volunteer computing properties
 • Embarrassingly parallel
 • Compute intensive
 • Little data communication

• Projects:
 • Cummulative BOINC project contribution: 11.71 Petaflops, 6 million computers
 • MilkyWay@home – 2.6 Petaflops, Study of stellar systems
 • Folding@home – 7.87 Petaflops, Protein folding
 • SETI@home – 769 Teraflops, Search for extraterrestrial intelligence
 • World Community Grid - 510 000 user accounts - FightAids@home, Dengue drugs, Genome comparison, clean energy, etc.
Is Volunteer Computing *Really* Grid Computing?

- Yes
 - A large number of autonomous computers connected through a network
 - A virtual organization joint for a common goal
 - Automatic resource management

- But not quite?
 - One-sided relationship: contributors get nothing (or “fame”) in return for resource sharing

- What about peer-to-peer computing? [1]
 - Bittorrent, The Onion Router, etc.

Examples of Today’s Grids

- **WLCG - Worldwide LHC Computing Grid**
 - Processing of data from LHC

- **NDGF - Nordic Data Grid Facility / Nordenet**
 - Collaboration mainly between Norway, Sweden, Denmark, and Finland.
 - Part of WLCG

- **Open Science Grid**
 - American collaboration of 72 institutions
 - 25000 computers (43k processors)
 - Part of WLCG

- **TeraGrid**
 - American collaboration of 11 institutions
 - Mostly Molecular Biosciences, physics and chemistry

- **EGI - European Grid Infrastructure**
 - Supersedes EGEE - Enabling Grids for E-sciencE
 - 50 institutions, 40 countries
WLCG – Worldwide LHC Computing Grid

- **The worlds largest grid**
 - Storage and processing of vast amounts of data
 - 15 million gigabytes per year
 - Too expensive to build one datacenter
 - 8000 researchers who access data

- Over 140 datacenters in 34 countries
 - Tier 0: CERN
 - Tier 1: Dedicated 10Gb/s fiber to 11 major datacenters
 - 63,723,713 GiB online Storage (plus additional tape storage)
 - 70,382 CPU cores
 - Tier 2: 140 sites

- Four virtual organizations (one for each LHC experiment)
 - ALICE, ATLAS, CMS, LHCb

- Middleware (Grid technology)
 - European Middleware Initiative (EMI -> ARC, gLite, UNICORE, dCache)
 - The Globus Toolkit
 - Open Middleware Infrastructure Institute
 - Virtual Data Toolkit

Top image from http://cdsweb.cern.ch/record/1221418
Bottom image from CERN, "An EGEE Comparative Study: Grids and Clouds – Evolution or Revolution?", 2008
NDGF - Nordic Data Grid Facility / Nordunet

• Building large clusters and supercomputers is expensive!
 • Data centers in Nordic countries can share compute resources with each other to solve larger problems than would be possible alone.
 • Funded by Nordic research councils

• Creator of ARC middleware
 • Builds on standards, including the Globus toolkit

• Applications:
 • LHC,
 • BioGrid,
 • Other academic uses

Image from http://www.nordugrid.org/
SweGrid Use

- LHC: 33%
- Chemistry: 22%
- Other Physics: 16%
- Amanda/Icecube: 14%
- Geo Science: 7%
- Fluid Mechanics: 4%
- Other: 4%

Data from Oxana Smirnova, How new communities can get access to a Grid infrastructure, 2009
From Grids to Clouds

Google Search Trends 2004-2010

Grid Computing

Cloud Computing

Data from Google Search Trends, http://www.google.com/trends, 2010
What is the Cloud?

“When talking about the cloud, it is mandatory to use at least one fitting quote”

-- A. R. Brodkorb, Ph.D. Trial Lecture, 2010
“The interesting thing about cloud computing is that we’ve redefined cloud computing to include everything we already do I don’t understand what we would do differently in light of cloud computing other than change the wording of some of our ads.”

– Larry Ellison, CEO Oracle, 2008

“A lot of people are jumping on the [cloud] bandwagon, but I have not heard two people say the same thing about it.”

– Andy Isherwood, HP VP Support & Services, 2008

“It’s stupidity. It’s worse than stupidity: it’s a marketing hype campaign. Somebody is saying this is inevitable — and whenever you hear somebody saying that, it’s very likely to be a set of businesses campaigning to make it true.”

– Richard Stallman, Founder of the GNU Project, 2008
Grids and Clouds

- Supercomputing
- Grid Computing
- Cloud Computing
- Web 2.0
- Cluster Computing

Adapted from Cloud Computing and Grid Computing 360-Degree Compared, I. Foster et al., 2009, DOI: 10.1109/GCE.2008.4738445
Defining the Cloud

• The Cloud is a relatively new concept
 • A wide variety of definitions [1]
 • Garner says:
 Will hit mainstream market in 2-5 years [2]

• Important concepts and technologies
 • Web-based
 • Virtualization
 • On-demand
 • Service level agreements

• Important keywords
 • Platform as a Service
 • Software as a Service
 • Infrastructure as a Service

Figure from [2]
Cloud Computing Core Concepts

- **Enabling technology: Web 2.0**
 - AJAX, SOAP, etc.
 - Used in: Google docs, web applications, etc.

- **Enabling technology: Virtualization**
 - Multiple virtual machines can occupy the same physical hardware
 - Virtual Machines in cloud computing is the equivalent of threads of parallel computing

- **Enabling technology: Multi-core**
 - Multi-core means that multiple virtual machines can easily run on the same physical machine

- **Enabling technology: Idling server parks**
 - Less than 10% server utilization [1, 2]

Cloud Computing Keywords

- **Platform as a Service**
 - Offers a high-level programming API
 - Examples: Microsoft Azure, Google AppEngine

- **Software as a Service**
 - Examples: Google docs (Office applications), Salesforce.com (CRM - Customer relationship management)

- **Infrastructure as a Service**
 - Lease virtual machines
 - Example: Amazon EC2, Amazon S3, Dropbox
Cloud Infrastructure as a Service: Amazon EC2 and S3

- Amazon EC3: Elastic Compute Cloud
 - Buy virtual machines just-in-time
 - All you need is a credit card to get started
 - Standardized Service Level Agreements
 - Supply a virtual machine image of your choice
 - Or choose from a set of standard images
 - Machine goes online in less than two minutes
 - Supply input to running images
 - SSH, etc

- Amazon S3: Simple Storage Service
 - Buy storage just-in-time
 - Accessible from HTTP and BitTorrent
Amazon EC2 - Pricing Model (Service Level Agreements)

<table>
<thead>
<tr>
<th>Service</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Instance</td>
<td>$0.02 / hour</td>
</tr>
<tr>
<td>Large CPU Instance (7.5 GiB RAM, 2 cores)</td>
<td>$0.34 / hour</td>
</tr>
<tr>
<td>High CPU Instance (7.0 GiB Ram, 8 cores)</td>
<td>$0.68 / hour</td>
</tr>
<tr>
<td>Cluster Compute Instance (23 GiB, 8 cores, 10GiB Ethernet)</td>
<td>$1.60 / hour</td>
</tr>
<tr>
<td>Cluster GPU Instance (22 GiB, 8 cores, 2xM2050, 10GiB Ethernet)</td>
<td>$2.10 / hour</td>
</tr>
<tr>
<td>High Redundancy S3 Storage</td>
<td>$0.14 / GiB / Mnth</td>
</tr>
<tr>
<td>Reduced Redundancy S3 Storage</td>
<td>$0.093 / GiB / Mnth</td>
</tr>
<tr>
<td>EBS Storage</td>
<td>$0.10 / GiB / Mnth</td>
</tr>
<tr>
<td>Small MySQL Instance</td>
<td>$0.22 / hour</td>
</tr>
</tbody>
</table>

- NEW Q4 2010: GPU instances
- Windows images cost slightly more (10-20 cent)
- Data transfer in and out of S3 datacenter is not free

Table adapted from J. Seland, Cloud Computing, 2010
Cloud Selling Point #1: Fine-grained Scalability

- Small startup company with a good idea (e.g., dropbox)
- How much infrastructure do you need?
- Using the cloud will probably be the least expensive alternative

Adapted from *A View of Cloud Computing*, M. Armbrust et al., 2010, DOI: [10.1145/1721654.1721672](https://doi.org/10.1145/1721654.1721672)
Cloud Selling Point #2: Pricing schemes

“1000 servers for one hour costs no more than using one server for 1000 hours” [1]

- Time to delivery might be worth a lot
- Rendering Ratatouille took over 1500 CPU years
- Payroll calculations
- Other “peaky” workloads

The Economies of Scale

"The GSA previously paid $2.35 million in annual costs for USA.gov, including $2 million for hardware refreshes and software re-licensing and $350,000 in personnel costs, compared to the $650,000 annual cost to host the site with Terremark." [1]

- Huge data-centers are cost effective [2]
 - Costs down a factor 5-7

- Clouds could mean more green computing [3]
 - Higher resource load means less servers
 - US Datacenters: 170 Mt CO2
 - Argentina: 142 Mt CO2
 - Netherlands: 146 Mt CO2
 - Malaysia: 178 Mt CO2

Cloud Uncertainties

• Who has access to your data?
 • Cloud provider?
 • Subcontractors?
 • Other customers?
 • Law enforcement agencies in another country?

• What happens if the cloud provider (or subcontractor)
 • Goes out of business?
 • Is bought by a third party?
 • Is brought down for political or legal reasons? [1, 2]
 • Is blacklisted because of another customer (Wikileaks, email spammer, etc.)?
 • Leaks its password database? (Gawker)

• Other problems
 • Vendor lock-in: can you export your data?
 • Debugging at large scales?
 • Software licenses?

Is the “Cloud” something new?

“Computation may someday be organized as a public utility.”
– John McCarthy, Inventor of Lisp, 1961

- No! Same sheep, different wrapping:
 - Grids: “Dynamic resource sharing”
 - Utility Computing: “Pay as you go”
 - The natural evolution of the grid

- Yes! Technology enablers have realized old ideas:
 - Appearance of infinite computing resources
 - No up-front commitment from users
 - Pay as you go on a short-term basis
Summary

In 2012 80% Fortune 1000 will pay for some cloud computing service; 30% will pay for Cloud infrastructure.

-- Gartner, 2008

• Most of us are users of "the cloud" already
 • Youtube, Dropbox, Google docs, etc.
 • Clouds will take over more and more of private computing

• But there are major obstacles:
 • Privacy
 • Data safety
 • Vendor lock-in

• Future of Grids:
 • Have built up a large user base and mature technology
 • Will continue to prosper in academic communities

• Future of Clouds:
 • Economic potential is huge ⇒ No up-front commitment
 • Economies of scale ⇒ Green computing
 • GPU Clouds ⇒ True GPU virtualization next?
 • High-performance computing and academic use of Clouds?
Some References and Further Reading

• Foster, I. Yong Zhao Raicu, I. Lu, S., *Cloud Computing and Grid Computing 360-Degree Compared*, Grid Computing Environments Workshop, 2008. GCE '08, Page(s): 1 – 10

• EGEE Report: *Grids and Clouds – Evolution or Revolution?, 2008*

• Open Cloud Manifesto, www.opencloudmanifesto.org

• Cloud Computing Use Case White Paper V4

• Open Grid Forum -- www.gridforum.org

• Grid Café – www.gridcafe.org

• I. Foster, C. Kesselmann, *The Grid: Blueprint for a New Computing Infrastructure*