
Simulaciones Eficientes de las

Ecuaciones de Aguas Someras en GPU

2012-07-30

Desafios del Modelado de Tsunamis y la Evaluación de Riesgo

 Universidad Tecnica Federico Santa Maria

Valparaíso, Chile

André R. Brodtkorb, Ph.D.,

Research Scientist, SINTEF ICT,

Department of Applied Mathematics, Norway

Email: Andre.Brodtkorb@sintef.no

mailto:Andre.Brodtkorb@sintef.no

Technology for a better society

Å Introduction GPU Computing

ÅProgramming GPUs for Water Resources

ÅEfficient Simulation of the Shallow Water Equations on GPUs

ÅSummary

Brief Outline

2

Technology for a better society

Development of the Microprocessor

1942: Digital Electric Computer
 (Atanasoff and Berry)

1971: Microprocessor
 (Hoff, Faggin, Mazor)

1947: Transistor
 (Shockley, Bardeen, and Brattain)

1956

1958: Integrated Circuit
 (Kilby)

2000

1971- More transistors
 (Moore, 1965)

3

Technology for a better society

Development of the Microprocessor (Moore's law)

4

1971: 4004,
2300 trans, 740 KHz

1982: 80286,
134 thousand trans, 8 MHz

1993: Pentium P5,
1.18 mill. trans, 66 MHz

2000: Pentium 4,
42 mill. trans, 1.5 GHz

2010: Nehalem
2.3 bill. trans, 2.66 GHz

Technology for a better society

The end of frequency scaling (2004)

1999-2011:

25% increase in

parallelism

1971-2004:

29% increase in

frequency

2004-2011:

Frequency

constant

A serial program uses <2%

of available resources!

Parallelism technologies:

Å Multi-core (8x)

Å Hyper threading (2x)

Å AVX/SSE/MMX/etc (8x)

5

The power density of microprocessors

is proportional to the clock frequency cubed:

[1] Asanovik et al., A View From Berkeley, 2006

Technology for a better society

Overcoming the Power Wall

6

85%

100%

100%

100%

170%

100%

Dual-core

Single-core
Performance

Power

Frequency

ÅBy lowering the frequency, the power consumption drops

dramatically

ÅBy using multiple cores, we can get higher performance with the

same power budget!

Technology for a better society

Massive Parallelism: The Graphics Processing Unit

Performance Memory Bandwidth

CPU GPU

Cores 4 16

Float ops / clock 64 1024

Frequency (MHz) 3400 1544

GigaFLOPS 217 1580

Power consumption ~130 W ~250 W

Memory (GiB) 32+ 3

7

Technology for a better society

Å GPUs were first programmed using OpenGL and other graphics languages

Å Mathematics were written as operations on graphical primitives

Å Extremely cumbersome and error prone

8

Early Programming of GPUs

[1] Fast matrix multiplies using graphics hardware, Larsen and McAllister, 2001

Input B

Input A

Output

Geometry

Element-wise matrix multiplication Matrix multiplication

Technology for a better society

Examples of Early GPU Research at SINTEF

Preparation for FEM (~5x)

Euler Equations (~25x)
Marine aqoustics (~20x)

9

Self-intersection (~10x)

Registration of medical

data (~20x)

Fluid dynamics and FSI (Navier-Stokes)

Inpainting (~400x matlab code)

Water injection in a fluvial reservoir (20x)
Matlab Interface

Linear algebra

SW Equations (~25x)

Technology for a better society

Todays GPU Programming Languages

10

2010 2000 2005

DirectCompute

AMD CTM / CAL

DirectX

BrookGPU

OpenCL

NVIDIA CUDA

Graphics APIs "Academic" Abstractions C- and pragma-based languages

AMD Brook+

PGI Accelerator

OpenACC

C++ AMP

2015

Technology for a better society

Examples of GPU Use Today

11

0%

2%

4%

6%

8%

10%

12%

14%

aug.2007 jul.2008 jul.2009 jul.2010 jul.2011 jul.2012

GPU Supercomputers on the Top 500 List

ÅThousands of academic papers

ÅBig investment by large software

companies

ÅGrowing use in supercomputers

Technology for a better society

Å For efficient use of CPUs you need to know a lot about the hardware restraints:

ÅThreading, hyperthreading, etc.

ÅNUMA memory, memory alignment, etc.

ÅSSE/AVX instructions,

ÅCache size, cache prefetching, etc.

Å Instruction latencies,

Åé

Å For GPUs, it is exactly the same, but it is a "simpler" architecture:

ÅLess "magic" hardware to help you means its easier to reach peak performance

ÅLess "magic" hardware means you need to consider the hardware for all

programs

12

Programming GPUs

Technology for a better society

Å The same program is launched for all threads "in parallel"

Å The thread identifiers are used to calculate its global position

Å The thread position is used to load and store data, and execute code

Å The parallel execution means that synchronization can be very expensive

13

GPU Execution Model

Grid (3x2 blocks)

Block (8x8 threads)

Thread in position (21, 11)

threadIdx.x = 5

threadIdx.y = 3

blockIdx.x = 2

blockIdx.y = 1

Technology for a better society

CPU scalar op CPU AVX op GPU Warp op

GPU Execution Model

CPU scalar op: 1 thread, 1 operand on 1 data element

CPU SSE/AVX op: 1 thread, 1 operand on 2-8 data elements

GPU Warp op: 1 warp = 32 threads, 32 operands on 32 data elements

Å Exposed as individual threads

Å Actually runs the same instruction

Å Divergence implies serialization and masking

14

Technology for a better society

Hardware serializes and masks divergent code flow:

Å Programmer is relieved of fiddling with element masks (which is necessary for SSE)

Å Execution time is still the sum of all branches taken

Å Worst case 1/32 performance

Å Important to minimize divergent code flow!

Å Move conditionals into data, use min, max, conditional moves.

Warp Serialization and Masking

15

Technology for a better society

Å First if-statement

Å Masks out

superfluous threads

Å Not significant

Å Iteration loop

Å Identical for all threads

Å Early exit

Å Possible divergence

Å Only beneficial when

all threads in warp can

exit

Å Removing early exit

increases performance from 0.84ms to 0.69ms (kernel only)

$+ef KĈHEg < BK ! ::: ::: fHDLg gHCNL DeEfHĀEL]LhBg HgCËf IĈCMELM ĀhBĀLhEaÅ but that is a different story J)

6bĈDĀELÄ VĈhĀ ZLhHĈEH]ĈfHBC HC -LcfBCËg .LfIBM
__global__
void
newton(float * x, const float * a, const float * b, const float * c, int N)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x ;
 if (i < N) {
 const float la = a[i];
 const float lb = b[i];
 const float lc = c[i];
 float lx = 0.f;
 for (int it=0; it<MAXIT; it++) {
 float f = la*lx*lx + lb*lx + lc ;
 if (fabsf (f) < 1e - 7f) {
 break ;
 }
 float df = 2.f*la*lx + lb ;
 lx = lx - f/ df ;
 }
 x[i] = lx;
 }
}

16

Technology for a better society

Algoritm Design Example: Solving the Heat Equation

ÅThe heat equation describes diffusive

heat conduction in a medium

ÅPrototypical partial differential equation

Åu is the temperature, kappa is the diffusion

coefficient, t is time, and x is space.

ÅWe want to design an algorithm that suits the GPU execution model

17

Technology for a better society

Finding a solution to the heat equation

Å Solving such partial differential equations
analytically is nontrivial in all but a few very
special cases

Å Solution strategy: replace the continuous derivatives
with approximations at a set of grid points

Å Solve for each grid point
numerically on a computer

Å "Use many grid points, and
high order of approximation
to get good results"

18

Technology for a better society

The Heat Equation with an implicit scheme

1. We can construct an implicit scheme by carefully choosing

the "correct" approximation of derivatives

2. This ends up in a system of linear equations

3. Solve Ax=b using standard GPU methods to evolve the solution in time

19

Technology for a better society

The Heat Equation with an implicit scheme

Å Such implicit schemes are often sought after:

ïThey allow for large time steps,

ïThey can be solved using standard tools

ïAllow complex geometries

ïThey can be very accurate

ïé

Å Howeveré

ïLinear algebra solvers can be slow and memory hungry, especially on the
GPU

ïMany sparse solvers are inherently serial and unsuited for the GPU

ïFor many time-varying phenomena, we are also interested in the temporal
dynamics of the problem

20

Technology for a better society

Algorithmic and numerical performance

21

Å Total performance is the product of

algorithmic and numerical performance

Å Your mileage may vary: algorithmic

performance is highly problem dependent

Å Sparse linear algebra solvers have low

numerical performance

Å Only able to utilize a fraction of the

capabilities of CPUs, and worse on GPUs

Å Explicit schemes with compact stencils can

give near-peak numerical performance

Å May give the overall highest performance

N
u

m
e

ri
c
a
l
p

e
rf

o
rm

a
n

c
e

Algorithmic performance

Red-

Black

Krylov

Multigrid

PLU

Tridiag

QR

Explicit

stencils

Technology for a better society

Explicit schemes with compact stencils

Å Explicit schemes can give rise to compact stencils

ïEmbarrassingly parallel

ïPerfect for the GPU!

22

Technology for a better society

The Shallow Water Equations

Å A hyperbolic partial differential equation

Å First described by de Saint-Venant (1797-1886)

Å Conservation of mass and momentum

Å Gravity waves in 2D free surface

Å Gravity-induced fluid motion

Å Governing flow is horizontal

Å Not only used to describe physics of water:

Å Simplification of atmospheric flow

Å Avalanches

Å ...

Water image from http://freephoto.com / Ian Britton

23

http://freephoto.com/

Technology for a better society

Target Application Areas

Floods

2010: Pakistan (2000+)

1931: China floods (2 500 000+)

Tsunamis

2011: Japan (5321+)

2004: Indian Ocean (230 000)

Storm Surges

2005: Hurricane Katrina (1836)

1530: Netherlands (100 000+)

Dam breaks

1975: Banqiao Dam (230 000+)

1959: Malpasset (423)
Images from wikipedia.org, www.ecolo.org

24

Technology for a better society

Using GPUs for Shallow Water Simulations

25

Å In preparation for events: Evaluate possible scenarios

ÅSimulation of many ensemble members

ÅCreation of inundation maps and emergency action plans

Å In response to ongoing events

ÅSimulate possible scenarios in real-time

ÅSimulate strategies for action (deployment of barriers,

evacuation of affected areas, etc.)

Å High requirements to performance => Use the GPU

Simulation result from NOAA

2CeCMĈfHBC DĈĀ KhBD Ç/Bg ĆCJLELg 8BeCfa YgeCĈDH 2CeCMĈfHBC .ĈĀgÈÅ IffĀÄ±±cccÃNBCgLhdĈfHBCÃNĈÃJBd±NJg±JLBEBJHN¹IĈ]ĈhMg±YgeCĈDH/Inundation_Maps/LosAngeles/Pages/LosAngeles.aspx

Technology for a better society

Vector of

Conserved

variables

Flux Functions
Bed slope

source term

Bed friction

source term

The Shallow Water Equations

26

Technology for a better society

The Shallow Water Equations

Å A Hyperbolic partial differential equation

ÅEnables explicit schemes

Å Solutions form discontinuities / shocks

ÅRequire high accuracy in smooth parts
without oscillations near discontinuities

Å Solutions include dry areas

ÅNegative water depths ruin simulations

Å Often high requirements to accuracy

ÅOrder of spatial/temporal discretization

Å Floating point rounding errors

Å Can be difficult to capture "lake at rest"
A standing wave or shock

27

Technology for a better society

Finding the perfect numerical scheme

ÅWe want to find a numerical scheme that
ÅWorks well for our target scenarios
ÅHandles dry zones (land)

ÅHandles shocks gracefully (without smearing or causing oscillations)

ÅPreserves "lake at rest"

ÅHas the accuracy for capturing the required physics

ÅPreserves the physical quantities

ÅFits GPUs well
ÅWorks well with single precision

ÅIs embarrassingly parallel

ÅHas a compact stencil

Åé

Åé

28

Technology for a better society

Scheme of choice: A. Kurganov and G. Petrova,

 A Second-Order Well-Balanced Positivity Preserving

Central-Upwind Scheme for the Saint-Venant System

Communications in Mathematical Sciences, 5 (2007), 133-160

The Finite Volume Scheme of Choice*

ÅSecond order accurate fluxes

ÅTotal Variation Diminishing

ÅWell-balanced (captures lake-at-rest)

ÅCompact stencil (Good ,but not perfect, match with the GPU)

* With all possible disclaimers

29

http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf
http://129.81.170.14/~kurganov/Kurganov-Petrova_CMS.pdf

Technology for a better society

Discretization

Å Our grid consists of a set of cells or volumes

Å The bathymetry is a piecewise bilinear function

Å The physical variables (h, hu, hv), are piecewise
constants per volume

Å Physical quantities are transported across the cell interfaces

Å Algorithm:

1. Reconstruct physical variables

2. Evolve the solution

3. Average over grid cells

30

Technology for a better society

Kurganov-Petrova Spatial Discretization (Computing fluxes)

31

Continuous variables Discrete variables Dry states fix Reconstruction Slope evaluation Flux calculation

Technology for a better society

Temporal Discretization (Evolving in time)

Gather all known terms

Use second order Runge-Kutta to solve the ODE

32

Technology for a better society

Overview of a Full Simulation Cycle

3. ODE Halfstep

1. Calculate fluxes

4. Calculate fluxes 5. Evolve in time

6. Apply boundary

conditions

2. Calculate Dt

33

Technology for a better society

Implementation º GPU code

Step

ÅFour CUDA kernels:

ï87% Flux calculation

ï<1% Timestep size (CFL condition)

ï12% Forward Euler step

ï<1% Set boundary conditions

34

