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ÅProgramming GPUs for Water Resources 

 

ÅEfficient Simulation of the Shallow Water Equations on GPUs 

 

ÅSummary 

Brief Outline 
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Development of the Microprocessor 

1942: Digital Electric Computer 
  (Atanasoff and Berry) 

1971: Microprocessor 
  (Hoff, Faggin, Mazor) 

1947: Transistor  
  (Shockley, Bardeen, and Brattain) 

1956 

1958: Integrated Circuit  
  (Kilby) 

2000 

1971- More transistors 
 (Moore, 1965) 
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Development of the Microprocessor (Moore's law) 
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1971: 4004,  
2300 trans, 740 KHz 

1982: 80286,  
134 thousand trans, 8 MHz 

1993: Pentium P5,  
1.18 mill. trans, 66 MHz 

2000: Pentium 4,  
42 mill. trans, 1.5 GHz 

2010: Nehalem 
2.3 bill. trans, 2.66 GHz 
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The end of frequency scaling (2004) 

1999-2011: 

25%  increase in  

parallelism 

1971-2004: 

29% increase in  

frequency 

2004-2011: 

Frequency  

constant 

A serial program uses <2%  

of available resources! 

Parallelism technologies: 

Å Multi-core (8x) 

Å Hyper threading (2x) 

Å AVX/SSE/MMX/etc (8x) 
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The power density of microprocessors  

is proportional to the clock frequency cubed: 

[1] Asanovik et al., A View From Berkeley, 2006 
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Overcoming the Power Wall 
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85% 

100% 

100% 

100% 

170% 

100% 

Dual-core

Single-core
Performance

Power

Frequency

ÅBy lowering the frequency, the power consumption drops 

dramatically 

ÅBy using multiple cores, we can get higher performance with the 

same power budget! 
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Massive Parallelism: The Graphics Processing Unit 

Performance Memory Bandwidth 

CPU GPU 

Cores 4 16 

Float ops / clock 64 1024 

Frequency (MHz) 3400 1544 

GigaFLOPS 217 1580 

Power consumption ~130 W ~250 W 

Memory (GiB) 32+ 3 
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Å GPUs were first programmed using OpenGL and other graphics languages 

Å Mathematics were written as operations on graphical primitives 

Å Extremely cumbersome and error prone 
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Early Programming of GPUs 

[1] Fast matrix multiplies using graphics hardware, Larsen and McAllister, 2001 

Input B 

Input A 

Output 

Geometry 

Element-wise matrix multiplication Matrix multiplication 
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Examples of Early GPU Research at SINTEF 

Preparation for FEM (~5x) 

Euler Equations (~25x) 
Marine aqoustics (~20x) 
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Self-intersection (~10x) 

Registration of medical 

data (~20x) 

Fluid dynamics and FSI  (Navier-Stokes) 

Inpainting (~400x matlab code) 

Water injection in a fluvial reservoir (20x) 
Matlab Interface 

Linear algebra 

SW Equations (~25x) 



Technology for a better society 

Todays GPU Programming Languages 
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2010 2000 2005 

DirectCompute 

AMD CTM / CAL 

DirectX 

BrookGPU 

OpenCL 

NVIDIA CUDA 

Graphics APIs "Academic" Abstractions C- and pragma-based languages  

AMD Brook+ 

PGI Accelerator 

OpenACC 

C++ AMP 

2015 
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Examples of GPU Use Today 
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GPU Supercomputers on the Top 500 List 

ÅThousands of academic papers 

ÅBig investment by large software 

companies 

ÅGrowing use in supercomputers 
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Å For efficient use of CPUs you need to know a lot about the hardware restraints: 

ÅThreading, hyperthreading, etc. 

ÅNUMA memory, memory alignment, etc. 

ÅSSE/AVX instructions,  

ÅCache size, cache prefetching, etc. 

Å Instruction latencies,  

Åé 

 

Å For GPUs, it is exactly the same, but it is a "simpler" architecture: 

ÅLess "magic" hardware to help you means its easier to reach peak performance 

ÅLess "magic" hardware means you need to consider the hardware for all 

programs 
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Programming GPUs 
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Å The same program is launched for all threads "in parallel" 

Å The thread identifiers are used to calculate its global position 

Å The thread position is used to load and store data, and execute code 

Å The parallel execution means that synchronization can be very expensive 
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GPU Execution Model 

Grid (3x2 blocks) 

Block (8x8 threads) 

Thread in position (21, 11) 

threadIdx.x = 5 

threadIdx.y = 3 

blockIdx.x = 2 

blockIdx.y = 1 
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CPU scalar op CPU AVX op GPU Warp op 

GPU Execution Model 

CPU scalar op: 1 thread, 1 operand on 1 data element 

CPU SSE/AVX op: 1 thread, 1 operand on 2-8 data elements 

GPU Warp op: 1 warp = 32 threads, 32 operands on 32 data elements 

Å Exposed as individual threads 

Å Actually runs the same instruction 

Å Divergence implies serialization and masking 
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Hardware serializes and masks divergent code flow: 

Å Programmer is relieved of fiddling with element masks (which is necessary for SSE) 

Å Execution time is still the sum of all branches taken 

Å Worst case 1/32 performance 

Å Important to minimize divergent code flow! 

Å Move conditionals into data, use min, max, conditional moves. 

Warp Serialization and Masking 
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Å First if-statement 

Å Masks out 

superfluous threads 

Å Not significant 

Å Iteration loop 

Å Identical for all threads 

Å Early exit 

Å Possible divergence 

Å Only beneficial when 

all threads in warp can 

exit 

Å Removing early exit 

increases performance from 0.84ms to 0.69ms (kernel only) 

 
$+ef KĈHEg < BK ! ::: ::: fHDLg gHCNL DeEfHĀEL ]LhBg HgCËf IĈCMELM ĀhBĀLhEaÅ but that is a different story J ) 

 

6bĈDĀELÄ VĈhĀ ZLhHĈEH]ĈfHBC HC -LcfBCËg .LfIBM 
__global__  
void  
newton( float * x, const  float * a, const  float * b, const  float * c, int  N) 
{  
  int  i = blockIdx.x  * blockDim.x  + threadIdx.x ;  
  if ( i  < N) {  
    const  float  la = a[i];  
    const  float  lb  = b[i];  
    const  float  lc  = c[i];  
    float  lx = 0.f;  
    for ( int  it=0; it<MAXIT; it++) {  
      float  f = la*lx*lx + lb*lx + lc ;  
      if ( fabsf (f ) < 1e - 7f) {  
        break ;  
      }  
      float  df  = 2.f*la*lx + lb ;  
      lx = lx -  f/ df ;  
    }  
    x[i] = lx;  
  }  
}  
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Algoritm Design Example: Solving the Heat Equation 

ÅThe heat equation describes diffusive  

heat conduction in a medium 

ÅPrototypical partial differential equation 

 

 

Åu is the temperature, kappa is the diffusion  

coefficient, t is time, and x is space. 

ÅWe want to design an algorithm that suits the GPU execution model 
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Finding a solution to the heat equation 

Å Solving such partial differential equations  
analytically is nontrivial in all but a few very  
special cases 

 

Å Solution strategy: replace the continuous derivatives  
with approximations at a set of grid points 

 

Å Solve for each grid point  
numerically on a computer 

 

Å "Use many grid points, and 
high order of approximation  
to get good results" 

18 



Technology for a better society 

The Heat Equation with an implicit scheme 

1. We can construct an implicit scheme by carefully choosing  

the "correct" approximation of derivatives 

 

 

2. This ends up in a system of linear equations 

 

 

 

 

 

 

3. Solve Ax=b using standard GPU methods to evolve the solution in time 
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The Heat Equation with an implicit scheme 

Å Such implicit schemes are often sought after: 

ïThey allow for large time steps, 

ïThey can be solved using standard tools 

ïAllow complex geometries 

ïThey can be very accurate 

ïé 

 

Å Howeveré 

ïLinear algebra solvers can be slow and memory hungry, especially on the 
GPU 

ïMany sparse solvers are inherently serial and unsuited for the GPU 

ïFor many time-varying phenomena, we are also interested in the temporal 
dynamics of the problem 
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Algorithmic and numerical performance 
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Å Total performance is the product of 

algorithmic and numerical performance 

Å Your mileage may vary: algorithmic 

performance is highly problem dependent 

 

Å Sparse linear algebra solvers have low 

numerical performance 

Å Only able to utilize a fraction of the 

capabilities of CPUs, and worse on GPUs 

 

Å Explicit schemes with compact stencils can 

give near-peak numerical performance 

Å May give the overall highest performance 
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Algorithmic performance 

Red-

Black 

Krylov 

Multigrid 

PLU 

Tridiag 

QR 

Explicit 

stencils 
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Explicit schemes with compact stencils 

Å Explicit schemes can give rise to compact stencils  

ïEmbarrassingly parallel 

ïPerfect for the GPU! 
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The Shallow Water Equations 

Å A hyperbolic partial differential equation 

Å First described by de Saint-Venant (1797-1886) 

Å Conservation of mass and momentum 

Å Gravity waves in 2D free surface 

 

Å Gravity-induced fluid motion 

Å Governing flow is horizontal 

 

Å Not only used to describe physics of water: 

Å Simplification of atmospheric flow 

Å Avalanches 

Å ... 

Water image from http://freephoto.com / Ian Britton 
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Target Application Areas 

Floods 

2010: Pakistan (2000+) 

1931: China floods (2 500 000+) 

 

 

Tsunamis 

2011: Japan (5321+) 

2004: Indian Ocean (230 000) 

Storm Surges 

2005: Hurricane Katrina (1836) 

1530: Netherlands (100 000+) 

Dam breaks 

1975:  Banqiao Dam (230 000+) 

1959: Malpasset (423) 
Images from wikipedia.org, www.ecolo.org 
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Using GPUs for Shallow Water Simulations 
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Å In preparation for events: Evaluate possible scenarios 

ÅSimulation of many ensemble members 

ÅCreation of inundation maps and emergency action plans 

 

Å In response to ongoing events 

ÅSimulate possible scenarios in real-time 

ÅSimulate strategies for action (deployment of barriers, 

evacuation of affected areas, etc.) 

 

Å High requirements to performance => Use the GPU 

Simulation result from NOAA 

2CeCMĈfHBC DĈĀ KhBD Ç/Bg ĆCJLELg 8BeCfa YgeCĈDH 2CeCMĈfHBC .ĈĀgÈÅ IffĀÄ±±cccÃNBCgLhdĈfHBCÃNĈÃJBd±NJg±JLBEBJHN¹IĈ]ĈhMg±YgeCĈDH/Inundation_Maps/LosAngeles/Pages/LosAngeles.aspx 
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Vector of 

Conserved 

variables 

Flux Functions 
Bed slope 

source term 

Bed friction 

source term 

The Shallow Water Equations 
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The Shallow Water Equations 

Å A Hyperbolic partial differential equation 

ÅEnables explicit schemes 

Å Solutions form discontinuities / shocks 

ÅRequire high accuracy in smooth parts  
without oscillations near discontinuities 

Å Solutions include dry areas 

ÅNegative water depths ruin simulations 

Å Often high requirements to accuracy 

ÅOrder of spatial/temporal discretization 

Å Floating point rounding errors 

Å Can be difficult to capture "lake at rest" 
A standing wave or shock 
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Finding the perfect numerical scheme 

ÅWe want to find a numerical scheme that  
ÅWorks well for our target scenarios 
ÅHandles dry zones (land) 

ÅHandles shocks gracefully (without smearing or causing oscillations) 

ÅPreserves "lake at rest" 

ÅHas the accuracy for capturing the required physics 

ÅPreserves the physical quantities 

ÅFits GPUs well 
ÅWorks well with single precision 

ÅIs embarrassingly parallel 

ÅHas a compact stencil 

Åé 

Åé 
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Scheme of choice: A. Kurganov and G. Petrova, 

 A Second-Order Well-Balanced Positivity Preserving  

Central-Upwind Scheme for the Saint-Venant System 

Communications in Mathematical Sciences, 5 (2007), 133-160 

The Finite Volume Scheme of Choice* 

ÅSecond order accurate fluxes 

ÅTotal Variation Diminishing  

ÅWell-balanced (captures lake-at-rest) 

ÅCompact stencil (Good ,but not perfect, match with the GPU) 

* With all possible disclaimers 
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Technology for a better society 

Discretization 

Å Our grid consists of a set of cells or volumes 

Å The bathymetry is a piecewise bilinear function 

Å The physical variables (h, hu, hv), are piecewise  
constants per volume 

 

Å Physical quantities are transported across the cell interfaces 

 

Å Algorithm: 

1. Reconstruct physical variables 

2. Evolve the solution 

3. Average over grid cells 
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Kurganov-Petrova Spatial Discretization (Computing fluxes) 
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Continuous variables Discrete variables Dry states fix Reconstruction Slope evaluation Flux calculation 



Technology for a better society 

Temporal Discretization (Evolving in time) 

Gather all known terms 

Use second order Runge-Kutta to solve the ODE 
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Overview of a Full Simulation Cycle 

3. ODE Halfstep 

1. Calculate fluxes 

4. Calculate fluxes 5. Evolve in time 

6. Apply boundary 

conditions  

2. Calculate Dt 
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Implementation º GPU code 

Step 

ÅFour CUDA kernels: 

ï87%  Flux calculation 

ï<1%  Timestep size (CFL condition) 

ï12%  Forward Euler step 

ï<1%  Set boundary conditions 
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