
Technology for a better society 1

Short course on

High-performance simulation with high-level languages

Part 1c

André R. Brodtkorb, SINTEF

Programación Gráfica de Altas Prestaciones

Technology for a better society 2

• Part 1a – Introduction

• Motivation for going parallel

• Multi- and many-core architectures

• Parallel algorithm design

• Programming GPUs with CUDA

• Part 1b – Solving conservation laws with pyopencl

• Solving ODEs and PDEs on a computer

• The heat equation in 1D and 2D

• The linear wave equation

• Part 1c – Best practices for scientific software development

• Challenges for scientific software development

• Best practices for scientific software development

Outline

Technology for a better society 3

Challenges for scientific software development

Technology for a better society 4

• Developing scientific software is dead hard

• Have to have deep knowledge of both the science and the programming

• Working with parallel computing is a major challenge by itself

• "Everything" can go wrong

• Debugging is near impossible

• We'll look into some typical challenges related to floating point

Challenges for scientific software development

Technology for a better society 5

Floating point

• Floating point is like chess:

it takes minutes to learn, and

a lifetime to master

(or, at least it's quite complex

for such a simple definition)

Floating point

A game of Othello, Paul 012, CC-BY-SA 3.0

[1] IEEE Computer Society (August 29, 2008), IEEE

Standard for Floating-Point Arithmetic

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

Technology for a better society 6

"update […] to address the hang that occurs when

parsing strings like “2.2250738585072012e-308″

to a binary floating point number” [1]

[1] http://www.oracle.com/technetwork/java/javase/fpupdater-tool-readme-305936.html

Intel Pentium with FDIV bug,

Wikipedia, user Appaloosa,

CC-BY-SA 3.0

Technology for a better society 7

• Floating point numbers are represented using a binary format:

• Defined in the IEEE-754-1985, 2008 standards

• 1985 standard mostly used up until the last couple of years

A floating point number on a binary computer

Floating point format [Wikipedia, en:User:Fresheneesz, traced by User:Stannered, CC BY-SA 3.0]

Technology for a better society 8

• Floating point has limited precision

• All intermediate results are rounded

• Even worse, not all numbers are representable in floating point

(limited precision)

• Demo: 0.1 in IPython

Rounding errors

Technology for a better society 9

Python:

> print 0.1

0.1

> print "%.10f" % 0.1

0.1000000000

> print "%.20f" % 0.1

0.10000000000000000555

> print "%.30f" % 0.1

0.100000000000000005551115123126

Technology for a better society 10

• Half: 16-bit float: Roughly 3-4 correct digits

• Float / REAL*4: 32-bit float: Roughly 6-7 correct digits

• Double / REAL*8: 64-bit float: Roughly 13-15 correct digits

• Long double / REAL*10: 80-bit float: Roughly 18-21 correct digits

• Quad precision: 128-bit float: Roughly 33 - 36 correct digits

Floating point variations (IEEE-754 2008)

Images CC-BY-SA 3.0, Wikipedia, Habbit, TotoBaggins, Billf4, Codekaizen, Stannered, Fresheneesz.

Technology for a better society 11

• Some systems are chaotic

• Is single precision accurate enough for your model?

• Is double precision --"--?

• Is quad precision --"--?

• Is …

• Put another way:

• What is the minimum precision

required for your model?

Floating point and numerical errors

Lorenz strange attractor, Wikimol, wikipedia, CC-BY-SA 3.0

Technology for a better society 12

There are often many sources for errors

• Garbage in, garbage out

• Many sources for errors

• Humans!

• Model and parameters

• Measurement

• Storage

• Gridding

• Resampling

• Computer precision

• …

Recycle image from recyclereminders.com

Cray computer image from Wikipedia, user David.Monniaux

Seaman paying out a

sounding line during a

hydrographic survey of the

East coast of the U.S. in 1916.

(NOAA, 2007).

Technology for a better society 13

• Shallow water equations: Well studied equations for physical phenomenon

• Difficult to capture wet-dry interfaces accurately

• Let's see the effect of single versus double precision measured as error in

conservation of mass

Example: Single versus double precision in shallow water

Technology for a better society 14

• Simple case (analytic-like solution)

• No wet-dry interfaces

• Single precision gives growing

errors that are "devastating"!

• Realistic case (real-world bathymetry)

• Single precision errors are

drowned by model errors

Single versus double precision [1]

[1] A. R. Brodtkorb, T. R. Hagen, K.-A. Lie and J. R. Natvig, Simulation and Visualization of

the Saint-Venant System using GPUs, Computing and Visualization in Science, 2011

Technology for a better society 15

• A classical way to introduce a large numerical error is to have a catastrophic

cancellation:

• The first variant above is subject to catastrophic cancellation if x and y are

relatively close. The second does not suffer from this catastrophic cancellation!

• Same for the quadratic formula: If c very small compared to b, we get catastrophic

cancellation:

Catastrophic and benign cancellations [1]

[1] What Every Computer Scientist Should Know About Floating-Point

Arithmetic, David Goldberg, Computing Surveys, 1991

𝑟=
−𝑏± 𝑏2−4𝑎𝑐

2𝑎

𝑥2−𝑦2 => (𝑥−𝑦)(𝑥+𝑦)

𝑟1=
−𝑏−𝑠𝑖𝑔𝑛(𝑏)𝑏2−4𝑎𝑐

2𝑎

𝑟2=
𝑐

𝑎∗𝑟1

vs

Technology for a better society 16

• Single precision

• Single precision uses half the memory

of double precision

• Single precision executes twice as fast

for certain situations

(SSE & AVX instructions)

• Single precision gives you half the number

of correct digits

• Double precision is not enough in certain cases

• Quad precision? Arbitrary precision?

• Extremely expensive operations

(100x+++ time usage)

So what should I use?

Technology for a better society 17

• Memory allocation example

• How much memory does the computer need if

I'm allocating 100.000.000 floating point

values in a) single precision, and b) double

precision?

Floating point allocation demo

Technology for a better society 18

Allocating float:

Address of first element: 00DC0040

Address of last element: 18B38440

Bytes allocated: 400000000

Allocating double:

Address of first element: 00DC0040

Address of last element: 308B0840

Bytes allocated: 800000000

single

Double

Technology for a better society 19

Floating point example

• What is the result of the following computation?

val = 0.1;

for (i=0 to 10.000.000) {

 result = result + val

}

Floating point summation demo

Technology for a better society 20

Float:

Floating point bits=32

1087937.00

Completed in 0.01859299999999999841726605609437683597207069396973 s.

Double:

Floating point bits=64

999999.99983897537458688020706176757812500000000000000000

Completed in 0.02386800000000000032684965844964608550071716308594 s.

Long double (__float80):

Floating point bits=128

1000000.00000008712743237992981448769569396972656250000000

Completed in 0.02043599999999999930477834197972697438672184944153 s.

Quad (__float128):

Floating point bits=128

1000000.00

Completed in 1.39770400000000005746869646827690303325653076171875 s.

Technology for a better society 21

• Designed by the Raytheon (US) as an

air defense system.

• Designed for time-limited use (up-to 8

hours) in mobile locations.

• Heavily used as static defenses using

the Gulf war.

• Failed to intercept an incoming Iraqi

Scud missile in 1991.

• 28 killed, 98 injured.

The patriot missile…

Technology for a better society 22

• It appears, that 0.1 seconds is not really 0.1 seconds…

• Especially if you add a large amount of them

The patriot missile…

Hours Inaccuracy (sec)
Approx. shift in

Range Gate (meters)

0 0 0

1 .0034 7

8 .0025 55

20 .0687 137

48 .1648 330

72 .2472 494

100 .3433 687

http://sydney.edu.au/engineering/it/~alum/patriot_bug.html

http://sydney.edu.au/engineering/it/~alum/patriot_bug.html
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html

Technology for a better society 23

Floating point and parallelism

Technology for a better society 24

• Fact 1: Floating point is non-associative:

• a*(b*c) != (a*b)*c

• a+(b+c) != (a+b)+c

• …

• Fact 2: Parallel execution is non-deterministic

• Reduction operations (sum of elements, maximum value,

minimum value, average value, etc.)

• Combine fact 1 and fact 2 for great joys!

Floating point and parallelism

Technology for a better society 25

• OpenMP summation of 10.000.000 numbers using 10 threads

val = 0.1;

#omp parallel for

for (i=0 to 10.000.000) {

 result = result + val

}

Demo time ver 3

Technology for a better society 26

OpenMP float test using 10 threads

Float:

Floating point bits=32

Run 0: 976668.7500

Run 1: 976759.375000

Run 2: 976424.875000

Run 3: 977388.375000

Run 4: 981089.062500

Run 5: 976620.2500

Double:

Floating point bits=64

Run 0: 1000000.000038751800

Run 1: 1000000.000038983100

Run 2: 1000000.000034328100

Run 3: 1000000.000039123900

Run 4: 1000000.000038272000

Run 5: 1000000.000037564800

Technology for a better society 27

• Why is parallel summation "more accurate"

than serial summation in this case?

Floating point and parallelism

Technology for a better society 28

• It appears that naïve summation works really poorly for floating

point, especially with parallelism

• We can try to use algorithms that take floating point into account

Kahan summation [1]

 function KahanSum(input)
 var sum = 0.0
 var c = 0.0 //A running compensation for lost low - order bits.
 for i = 1 to input.length {
 y = input[i] - c //So far, so good: c is zero.
 t = sum + y //Alas, sum is big, y small,
 //so low - order digits of y are lost.
 c = (t - sum) - y //(t - sum) recovers the high - order part of y;
 //subtracting y recovers - (low part of y)
 // Algebraically, c should always be zero.
 //Beware eagerly optimising compilers !
 sum = t
 }
return sum

[1] Inspired by Bob Robey, EPSum, ICERM 2012 talk, http://faculty.washington.edu/rjl/icerm2012/Lightning/Robey.pdf

http://faculty.washington.edu/rjl/icerm2012/Lightning/Robey.pdf
http://faculty.washington.edu/rjl/icerm2012/Lightning/Robey.pdf

Technology for a better society 29

• Kahan summation in parallel!

Demo time ver 4

Technology for a better society 30

Float:

Floating point bits=32

 Traditional sum, Kahan sum

Run 0: 499677.062500, 4996754.500

Run 1: 499679.250000, 4996754.500

Run 2: 499677.468750, 4996754.500

Run 3: 499676.312500, 4996754.500

Run 4: 499676.687500, 4996754.500

Run 5: 499679.937500, 4996754.500

Double:

Floating point bits=64

 Traditional sum, Kahan sum

Run 0: 500136.4879299310900, 5001364.87929929420

Run 1: 500136.4879299307400, 5001364.87929929420

Run 2: 500136.4879299291600, 5001364.87929929420

Run 3: 500136.4879299313800, 5001364.87929929420

Run 4: 500136.4879299254400, 5001364.87929929420

Run 5: 500136.4879299341700, 5001364.87929929420

Technology for a better society 31

Advanced floating point

Technology for a better society 32

• Round towards +infinity (ceil)

• Round towards –infinity (floor)

• Round to nearest (and up for 0.5)

• Round to nearest (and towards zero for 0.5)

• Round towards zero

• Can be used for interval arithmetics!

Rounding modes

Technology for a better society 33

• Signed zeros -0 != +0

• Signed not-a-numbers:

quiet NaN, and signaling NaN (gives exception)

examples: 0/0, sqrt(-1), …

(x == x) is false if x is a NaN

Special floating point numbers

Technology for a better society 34

• Signed infinity

• Numbers that are too large to represent

5/0 = +infty, -8/0 = -infty

• Subnormal or denormal numbers

• Numbers that are too small to represent

Special floating point numbers

Technology for a better society 35

• Unit in the last place or unit of least precision (ULP) is the spacing

between floating point numbers

• "The most natural way to measure floating point errors"

• Number of contaminated digits: log2𝑛 when the error is n ulps

• Numbers close to zero have the smallest ULPs!

Units in the last place [1]

0

1 ULP

[1] What every computer scientist should know about floating-

point arithmetic, David Goldberg, Computing Surveys , 1991

Technology for a better society 36

• Floating point multiply-add as a fused operation

• a = b*c+d with only one round-off error

• GPUs implement this already

• This is basically the same deal as the extended precision.

• It's a good idea to use this instruction, but it gives "unpredictable" results

• Users need to be aware that computers are not exact, and that two

computers will not always give the same answer

Some differences between 1985 and 2008

Technology for a better society 37

Best Practices

See also

 Best Practices for Scientific Computing,

Greg Wilson et al., 2012, arXiv:1210.0530

Technology for a better society 38

KISS: Keep it simple, stupid

• Design your code and work flow so

"anyone" can repair it using standard tools

• If it's extremely complicated,

does it really have to be?

• Simplicity in design is a virtue

• A common pitfall for computer scientists is to

design "the one software to rule them all" instead

of small easy-to-use components with a single use

Keep it simple!

Technology for a better society 39

Use a high-level language

• Your productivity increases dramatically the less details you have to consider

• Use an interpreted languages to also avoid compilation times:

• Python

• Matlab

• Etc.

Write programs for people, not computers

• If a code is easy to read, it is easier to check if it is doing what it should

• Does the code you just wrote make sense to "most people"?

• Human memory is extremely limited: "a program should not require its readers to hold

more than a handful of facts in memory at once"

Write elegant, clean code efficiently

Technology for a better society 40

Use version control

• Learn how to see the difference (diff) between two versions of the software, and how to

revert changes

• Put "everything that has been created manually" in version control

• Version control is also a simple backup system

Use the computer to record history

• Data and source code provenance should automatically be stored

"history" in Matlab or the Linux command-line,

"doskey /history" on windows command line,

Ipython, etc.

• Automatically record versions of software and data,

and parameters used to produce results

Store changes and development history

Technology for a better society 41

Optimize software only after it works correctly

• When it works, use a profiler to find out what the bottleneck is

• Software developers write the same amount of code independently of the language:

"write code in the highest-level language possible"

Write tests

• Regression testing => has something changed

• Verification testing => does the code produce known correct/analytical solutions?

• Run the tests regularly

Optimization and testing

Technology for a better society 42

• Software testing is important for having trust in computer programs

• The simplest kind of test, a regression test, will check that the program output

does not change

• Feature tests and unit tests that test

specific features and parts of the software

give the expected output

• Testing of fixed bugs to make sure

they do not reappear

• More advanced tests include verification and

validation

Software testing

First computer bug, Harvard Mk. II, 1947

Technology for a better society 43

Regression testing

• Software development can be split into four categories: add feature, fix bug, refactor,

optimize.

• Program output should only change when fixing a bug!

• Regression tests make it easy to check that you did not change the expected output

• Run the program once and store the expected results

• For every future run, check that the output is identical to the stored version

• Very important to consider your development: you should only perform one task at a time!

Change

structure

New

functionality

Change

functionality

Change

resource use

Add feature X X X

Fix bug X X

Refactor X

Optimize X X

Technology for a better society 44

• A lot of code on the internet is copyrighted and non-free

• That it is on the internet does not mean you can use it for free

• Code in books are also typically copyrighted and non-free

• To share your code with others, you should supply them with a license

• Two main types of open source licenses:

• Permissive (MIT, BSD, etc.): Code can be changed and incorporated into

closed source (commercial) without having to share changes to the code

• Protective (GPL, etc.): All code changes must be available to anyone who has

your program

• Data can often be released under suitable Creative-Commons licenses,

http://creativecommons.org/

Sharing code & software licenses

Inspired by talk by Johan Seland, 2013 winter school

Technology for a better society 45

Summary

Technology for a better society 46

Summary

• Parallel computing is important for performance

• Serial computing utilizes as little as 1% of the CPU performance

• OpenCL and python is a really efficient prototyping tool

• OpenCL is "identical" to CUDA, and you can use pyopencl for prototyping

• Easy to plot variables

• You save a huge amount of time by being thorough

• Trying to take shortcuts often does not pay off

• It is often better to do it right from the start

